
Statistically and Dynamically Downscaled, Calibrated, Probabilistic 10-m
Wind Vector Forecasts Using Ensemble Model Output Statistics

BRYAN P. HOLMAN

Department of Ocean Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida

STEVEN M. LAZARUS

Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida

MICHAEL E. SPLITT

College of Aeronautics, Florida Institute of Technology, Melbourne, Florida

(Manuscript received 9 November 2017, in final form 15 May 2018)

ABSTRACT

A computationally efficient method is developed that performs gridded postprocessing of ensemble 10-m

wind vector forecasts. An expansive set of idealized WRF Model simulations are generated to provide

physically consistent, high-resolution winds over a coastal domain characterized by an intricate land/water

mask. The ensemble model output statistics (EMOS) technique is used to calibrate the ensemble wind vector

forecasts at observation locations. The local EMOS predictive parameters (mean and variance) are then

spread throughout the grid utilizing flow-dependent statistical relationships extracted from the downscaled

WRF winds. In a yearlong study, the method is applied to 24-h wind forecasts from the Global Ensemble

Forecast System (GEFS) at 28 east-central Florida stations. Compared to the raw GEFS, the approach im-

proves both the deterministic and probabilistic forecast skill. Analysis of multivariate rank histograms in-

dicates that the postprocessed forecasts are calibrated. A downscaling case study illustrates the method as

applied to a quiescent easterly flow event. Strengths and weaknesses of the approach are presented and

discussed.

1. Introduction

As numerical weather prediction (NWP) models

continue to improve, increasing value is being recog-

nized in quantifying not only the best guess of a future

atmospheric state (deterministic forecast) but also the

uncertainty in that forecast (Gneiting andRaftery 2005).

To that end, ensemble systems have been developed at

many weather prediction centers. Ensembles account

for uncertainty by varying dynamical cores, initial and/

or boundary conditions, or model physics (Mass 2003).

Because the spread between ensemble solutions has

been shown to be related to the forecast error, a number

of spread–skill relationships have been developed (e.g.,

Whitaker and Loughe 1998; Grimit and Mass 2007).

However, in order to realize the full potential of

ensemble output, the forecasts must be reliable and free

of systematic error. Unfortunately, this is not generally

the case as current ensemble systems are inherently bi-

ased and suffer from underdispersion (i.e., observations

frequently fall outside the range of individual ensemble

member solutions) (Toth et al. 1997; Buizza et al. 2005).

These issues can be addressed by statistically post-

processing ensemble output (Gneiting and Raftery 2005).

The goal of ensemble postprocessing is to create proba-

bilistic forecasts that are sharp (i.e., reduced spread) and

calibrated, meaning forecast probabilities are consistent

with observations (Gneiting 2014). Two state-of-the-art

ensemble calibration methods are Bayesian model av-

eraging (BMA; Raftery et al. 2005), and ensemble model

output statistics (EMOS; Gneiting et al. 2005). These

approaches convert ensemble forecasts into predictive

probability density functions (PDF) using training data

comprising recent forecast errors. The predictive PDF

parameters, its mean, and variance, represent bias- and
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dispersion-corrected functions of the ensemble mean

and ensemble variance, respectively (Gneiting 2014).

In this study we focus on calibration methods for en-

semble wind forecasts. BMA has been used for wind

direction (Bao et al. 2010) and both BMA and EMOS

have been adapted for wind speed (Sloughter et al. 2010;

Thorarinsdottir and Gneiting 2010). Yet wind speed and

direction are not independent, and preserving the re-

lationship between the two is essential for many appli-

cations (Schuhen et al. 2012). Given that forecasting

surface winds is a multidimensional problem, bivariate

BMA (Sloughter et al. 2013) and EMOS (Schuhen et al.

2012) methods have been developed to calibrate en-

semble wind vector forecasts. Alternatively, Pinson

(2012) introduced a recursive and adaptive method for

wind vectors that preserves the rank dependence struc-

ture of the original ensemble, resulting in a discrete

ensemble as opposed to a predictive density.

Regardless of methodology, forecasts calibrated using

point observations are only available at station locations,

while postprocessed forecasts are needed everywhere

(Gneiting and Raftery 2005; Mass et al. 2009). A number

of different approaches have been developed that at-

tempt to address this. For example, in lieu of observations,

a gridded product (analysis) can be used to develop the

calibration model, as done for temperature by Kann

et al. (2009) and for wind vectors by Pinson (2012).

However, high-resolution analyses are not generally

available everywhere (Mass et al. 2008), and resulting

postprocessed forecasts can inherit systematic errors

present in the analysis product (Gneiting 2014). As an

alternative, gridded training datasets can be constructed

using forecast errors from point stations that share re-

lated characteristics (Mass et al. 2008) to which a cali-

bration model is then fit (Kleiber et al. 2011). Mass et al.

(2009) utilize this latter approach to provide opera-

tional, calibrated, probabilistic forecasts of temperature

and precipitation over the Pacific Northwest. One of the

more popular approaches performs a local calibration

(i.e., at observation locations) and then spreads the pre-

dictive PDF parameters onto a grid using geostatistical

methods. This technique has been applied extensively to

surface temperature forecasts (Berrocal et al. 2007; Kleiber

et al. 2011; Scheuerer and Büermann 2014; Scheuerer and

König 2014; Feldmann et al. 2015), and recently to forecasts

of wind speed (Scheuerer and Möller 2015).
We introduce a unique approach to the ensemble

wind forecast problem that focuses on an area with a

relatively complex land/water mask. The study area

comprises a coastal estuary in east-central Florida, the

Indian River Lagoon (IRL), whose intricate coastline and

narrow width requires downscaling in order to be resolved

by current ensemble systems (Holman et al. 2017). The

technique we present seeks to combine the benefits of

dynamical downscaling (i.e., physically consistent flow

dependencies) and statistical postprocessing (i.e., cali-

bration using recent forecast errors) using a three-step

process that includes 1) an antecedent application of

the Weather Research and Forecasting (WRF) Model

(Skamarock et al. 2008) to downscale an expansive set of

idealized wind simulations to high resolution (333-m

horizontal grid spacing), 2) using bivariate EMOS to

calibrate ensemble wind vector forecasts at observing

stations, and 3) the spreading of EMOS predictive pa-

rameters (i.e., mean and variance) from station locations

to nearby observation-free locations using directionally

dependent statistical relationships extracted from the

downscaled WRF wind fields.

The remainder of this paper is as follows. Section 2

describes the ensemble wind vector forecasts and the

verifying observations. Section 3 motivates the use of

bivariate EMOS to calibrate these forecasts and briefly

outlines its methodology. Section 4 details the idealized

WRF downscaling framework and discusses how the

statistical relationships are determined and then used to

spread the EMOS parameters. A data withdrawal ex-

periment is performed in section 5 to test the procedure

and the results are presented in section 6. Section 7

presents a summary and discussion of the results and

offers suggestions for future work.

2. Data

a. Observations

In this studywe verifywind vector forecasts at both land-

and water-based stations. As will be shown in section 4b,

one objective of the method introduced here is the ability

to estimate winds over the IRL using nearby observations,

regardless of station type (i.e., land, shoreline, or open

water). A total of 28 quality-controlled observing stations

were selected from 4 observation networks for this pur-

pose (Fig. 1b): 11 from WeatherFlow Inc. (http://www.

weatherflow.com), 10 Automated Surface Observing Sta-

tions (ASOS), 4 from the South Florida Water Manage-

ment District (SFWMD), and 3 stations from the

National Data Buoy Center (NDBC). In total, 12 of the

stations are on land, 8 are located near shorelines, and 8

are over water. In general these stations border the east

coast of Florida, with the exception of the four Lake

Okeechobee stations, Okeechobee airport, and buoy

41009 in the Atlantic Ocean (Fig. 1b).

For forecast verification purposes the reported wind

speed and wind direction at these stations are broken

into vector components. Only the most recent observations

(within a 10-min window) to the 6-hourly GEFS output
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are used. Wind reporting practices vary across the four

networks used here. For example, ASOS stations,

sourced here from hourly METARs, report 2-min-

averaged wind speed and direction rounded to the

nearest knot (1 kt 5 0.5144ms21) and 108, respectively,
and calm winds (,3 kt) are reported as zero (Nadolski

1998). In contrast, WeatherFlow Inc. stations report 5-

min-averaged winds to the nearest 0.01ms21 and degree.

Despite these differences, no conversion between ob-

servations with competing averaging periods was made

since each represents an unbiased estimate of the true

mean wind (Harper et al. 2010). Anemometer heights are

not 10m at two land, four shoreline, and all eight open

water stations. At these stations 10-m equivalent winds

are calculated following Hsu et al. (1994).

b. Model output

Ensemble surface (10m) wind vector forecasts for

this study were obtained from the National Centers for

Environmental Prediction (NCEP) Global Ensemble

Forecast System (GEFS). The GEFS cycles every

6 hours (0000, 0600, 1200, and 1800 UTC), producing

global output on a 1.08 latitude–longitude grid. The

GEFS grid spacing over Florida is roughly 100km, re-

sulting in a coarse-resolution land mask over the region

(Fig. 1a). We mine the GEFS 24-h wind vector forecasts

during a 13-month period ending 31 December 2015.

This allows for verification of postprocessed forecasts

(which use a 30-day training window) across the 2015

calendar year. The GEFS forecasts are bilinearly in-

terpolated to the location of each observing station.

3. Bivariate EMOS for wind vectors

The aim of this study is to calibrate 24-h ensemble

wind vector forecasts at observing stations and spread

the model parameters (mean and variance) to nearby,

observation-free locations. We employ ensemble model

FIG. 1. The Florida Peninsula with (a) land mask for the GEFS ensemble system (gray shading), and the domain

used by theWRFModel (thick black box), and (b) locations of the 28 stations used in this study. The type of station

(land, shoreline, open water) is depicted by the symbol shape as portrayed in the legend (top right).
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output statistics (EMOS; Gneiting et al. 2005) for wind

vectors for local calibration as implemented by Junk

et al. (2014). The performance of EMOS is competitive

with Bayesian model averaging (BMA; Raftery et al.

2005; Sloughter et al. 2013), but is more computationally

efficient (Thorarinsdottir and Gneiting 2010; Junk et al.

2014; Feldmann et al. 2015).

The EMOS postprocessing method used here utilizes

the ensemble mean and spread from GEFS wind vector

forecasts to output a bivariate normal predictive PDF.

The bivariate normal PDF for a wind vector (u, y) is

given [Eq. (4.33) in Wilks (2011)] as follows:
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Equation (1) contains five parameters that require es-

timation: the u and y wind component predictive means

(mu and my), variances (s
2
u and s2

y), and correlation (ruy).

In the EMOS framework these parameters represent

modified versions of ensemble forecasts that have

been statistically optimized given verifying observa-

tions. Specifically, mu and my represent bias-corrected

components of the ensemble mean wind vector, s2
u and

s2
y represent the ensemble spread (variance) that has

been scaled to correct for dispersion errors, and ruy
represents the estimated correlation between the en-

semble mean wind components.

In their implementations of bivariate EMOS, Schuhen

et al. (2012) and Junk et al. (2014) begin by first estimating

ruy offline (i.e., using an independent dataset) at each ob-

servation location. The correlation is expressed as a trig-

onometric function of the ensemble mean wind direction

whose parameters are determined via weighted nonlinear

least squares. Here, ruy is set to zero because, for the sta-

tions investigated in this study, estimations via its explicit

modeling yielded only minimal differences in calibration

metrics (not shown).

Following Junk et al. (2014), the predictive means mu

andmy of the bivariate density are defined as functions of

the ensemble mean wind components (u and y):
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The three coefficients for each wind component are first

estimated by regressing u and y against observed wind

components using a running training window of 30 days,

with the constraint that forecast–observation pairs are

valid at the same hour as the current forecast. Thus, the

predictive means represent bias-corrected versions of

the ensemble mean wind components.

The variance parameters s2
u and s2

y are estimated

following Schuhen et al. (2012):

s2
u 5 c

u
1d

u
s2u and s2

y 5 c
y
1 d

y
s2y , (3)

where s2u and s2y are the variances in the u and y

components across m ensemble members defined by

s2u 5
1

m
�
m

i51
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i
2 u)2 and s2y 5

1

m
�
m

i51

(y
i
2 y)2 . (4)

For the GEFS ensemble,m5 21. The coefficients cu, du,

cy, and dy in Eq. (3), referred to as dispersion parame-

ters, are constrained to be nonnegative and are esti-

mated following the maximum likelihood framework

outlined by Schuhen et al. (2012). In general, the s2
u and

s2
y parameters that result are much greater than the in-

dividual ensemble variances themselves, sometimes by

two orders of magnitude or more. The parameter esti-

mates are then applied [in Eq. (1)] to produce a bivariate

normal predictive density function that is optimized

based on recent forecast errors.

4. Interpolated EMOS

a. Idealized WRF simulations

The WRF simulations are designed to provide a

physically consistent, high-resolution surface (10m) wind

field that can be used to downscale a coarse-resolution

ensemble and spread locally calibrated estimates of its

mean and variance to nearby observation-free locations.

The functionality of the WRF Model in this process is

manifest in its surface physics and resolution, which

provide a means of extracting flow-dependent statistical

relationships associated with the complex land–water

interface of a coastal estuary.

A total of 180 simulations were run using the Ad-

vanced Research version ofWRF (WRF-ARW) version

3.8 (Skamarock et al. 2008). Model setup follows that of

the convective-radiation ideal case (em_convrad) added

in WRF, version 3.7 (see http://www2.mmm.ucar.edu/

wrf/users/wrfv3.7/updates-3.7.html), with modifications

described as follows. To encompass the entirety of the

IRL and nearby observing stations we use a 550 (nx) by

950 (ny) lambert conic conformal grid with horizontal

spacing equal to 333m. The resulting horizontal domain

is roughly 1803 315 km2 (thick black box in Fig. 1a) with

open boundaries on all sides. Land-use and terrain in-

formation are determined using theWRF preprocessing

system and the ;30-m 2011 NLCD land-use dataset

(Homer et al. 2015). In the vertical, model top is
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set at 30 km with 35 eta levels, left unchanged from the

em_convrad default settings.

The purpose for conducting these simulations is to

resolve mean wind fields in quasi-equilibrium with the

heterogeneous land surface under neutral atmospheric

conditions. To this end, we neglect diurnal and radiative

effects by turning off the longwave and shortwave

physics options. As a result, sea and lake breezes do not

appear in the model output. Cloud and microphysics

options are also turned off to limit boundary interactions

that result from such features.

WRF surface winds are sensitive to PBL scheme se-

lection (Akylas et al. 2007; Cheng et al. 2013). For this

study we parameterize PBL and surface layer processes

with the Yonsei University (YSU; Hong et al. 2006) and

accompanying MM5 similarity (Beljaars 1995) schemes,

respectively. The YSU scheme was selected over the

Mellor–Yamada–Janjić (MYJ; Janjić 1994) because

preliminary analysis showed a larger wind speed con-

trast between land and water grid cells (not shown).

Simulations are initialized from an idealized sounding,

with a land and sea surface pressure of 1000hPa and a

temperature of 300.65K (the annually averaged high

temperature for Melbourne, Florida). The thermody-

namic profile is identical for all simulations with neutral

stability (du/dz 5 0) in the lowest kilometer and stable

conditions above. The 180 simulations are defined by

systematically varying the initial wind direction (18 to-

tal, every 208 starting at due north) and speed (10 total,

including 1.0, 2.5, 3.75, 5.0, 6.25, 7.5, 8.75, 10.0, 12.5, and

15.0m s21). The initial wind profiles have no directional

or speed shear and thus are represented as a single point

on a hodograph. The only difference in the simulations is

the initial values of the u and y components.

The simulations were run until surface winds reached

a quasi–steady state (i.e., when near-surface wind speed

and direction essentially ceased changing in response to

the surface characteristics). The adjustment process,

which takes on the order of 6 h, results in a decrease

in magnitude and a subsequent cross-isobaric down-

gradient shift in direction that is more pronounced for

land-based grid cells. An example of this process is

shown for the WRF simulation initialized with WNW

(3008) winds at 8.75m s21 (Fig. 2). At 15min into the

simulation, the initial wind direction has changed little

but speeds have decreased to 7.5m s21 over the ocean

and 3.5m s21 over portions of the peninsula. By 6h,

10-m wind speeds have decreased substantially (to

approximately 2ms21) over the peninsula and have

backed to a more westerly flow. Downwind of the pen-

insula, over the open ocean, the winds accelerate in the

nearshore and gradually veer to the WNW. To mitigate

the impact of turbulent structures on the mean flow

(of primary interest here), each simulation is extended

an additional hour (to 7 h) over which the average wind

components are calculated. Thus, the mean wind field

is estimated as 1-h average wind components after

equilibrium.

The result of these simulations compose a large mul-

tidimensional database populated by high-resolution

(333m) idealized surface wind fields. These data are

used to estimate directionally dependent relationships

between WRF grid cells with and without observations

as described in the next section.

b. Using WRF output to spread EMOS parameters

This section outlines the process of utilizing the

WRF winds to spread PDF parameters. This process is

performed on the fly, after applying bivariate EMOS

locally, using a rolling 30-day training period. Local

EMOS (hereafter LEMOS) is carried out at the

28 stations introduced previously with ruy assumed to be

zero (section 3). The remaining predictive distribution

parameters (mu, my, s
2
u, and s2

y) are spread as follows.

1) SPREADING THE MEAN PARAMETERS

The directionally dependent relationships used to

spread mean parameters are developed by first identi-

fying the WRF simulation most analogous to an ob-

serving station’s current LEMOS mean forecast. This is

accomplished by minimizing the Euclidean norm in <2

between this forecast vector and the 180 WRF vectors

from the grid cell containing this station. The regression

(linear model) is then populated by selecting the WRF

simulations with the same initial direction as that ob-

tained via the distance metric. Given the inherent di-

rectional variability, the winds from the two adjacent

direction bins are also included. The 30 simulations (i.e.,

10 wind speeds per direction, 3 direction bins) are then

used to separately regress the u and y components at

the observation-containing grid cell (predictor) against

those from the grid cell of interest (predictand). The

observing station’s predictive mean wind components

(mu and my) are then inserted into the directionally de-

pendent regression equations, resulting in estimates of

the predictive means at the grid cell of interest.

To provide an example, we detail the process of

spreading the 0000UTC 7 February 2015 LEMOSmean

forecast at XRPT, a station on the IRL’s western shore,

to the grid cell containing the station KMLB. The choice

of KMLB here is arbitrary, as information can be spread

anywhere on the WRF grid. The WRF wind vectors for

the grid cell that contains XRPT are shown in Fig. 3a.

The LEMOS mean forecast at XRPT is depicted by the

white filled triangle. This forecast is most consistent with

simulations initialized with NE winds (408, filled light
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gray circles). The dark gray squares are the vectors ini-

tialized within the adjacent directional bins (i.e., 208 and
608). Given the location of XRPT, the magnitude of the

simulated onshore flow (easterly, u component less than

zero) is nearly double that of the offshore (westerly, u

component greater than zero). The u components of the

simulated vectors at XRPT (x axis) and KMLB (y axis)

are shown in Fig. 3b. The least squares fit (solid black

line) yields a regression equation of uKMLB 5 0.58 1
0.68uXRPT. This regressed fit is key, representing the

directionally dependent relationship between the two

station’s WRF grid cells conditional on the XRPT

LEMOS forecast. While determined using WRF data,

this relationship is used to spread the u component from

the LEMOS predictive mean forecast at XRPT to KMLB

by inserting the current XRPT value (mu 5 22.95ms21,

white filled triangle in Fig. 3a), yielding a mu estimate at

KMLB of 21.41ms21 (white filled diamond). A similar

regression using the y components yields a KMLB my

estimate of 23.22ms21 (not shown).

The value of the WRF here is providing gridded data

across the study domain, and the process of first

identifying relevant WRF data (given a postprocessed

forecast) allows for directionally dependent relation-

ships to be established. The process outlined here can

estimate predictive means at any location on theWRF

grid (521 001 cells) using a forecast from any observ-

ing station.

2) SPREADING THE VARIANCE PARAMETERS

The variance parameters are scaled according to the

ratio of the average magnitude of the same 30 wind

vectors at the grid cell of interest (KMLB) to that of the

station-containing grid cell (XRPT). In this example the

mean wind speeds for the WRF grid cells containing

KMLB and XRPT are 2.16 and 4.05m s21, respectively

(a ratio of 0.53). Multiplying the ratio and the current

estimate of the XRPT LEMOS variance parameters

(3.25 and 5.00m2 s22) results in scaled estimates of s2
u

and s2
y at KMLB of 1.73 and 2.66m2 s22, respectively.

FIG. 2. WRF domain subset with wind speed (m s21, shaded contours) and associated wind barbs (full barb equals

5m s21) after (a) 15min and (b) 6 h of the simulation initialized with WNW winds (3008) at 8.75m s21.
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This approach is motivated by the fact that, at the

28 stations investigated here, LEMOS variances are

positively correlated withWRFwind speed. Themedian

LEMOS s2
u and s2

y values (calendar year 2015, y axis)

versus the median WRF wind speeds (all simulations,

x axis) at the locations of the 28 observing stations are

shown in Fig. 4. The variance roughly follows the one-

to-one line (dashed), although more so for the median

s2
u values (black circles) than s2

y (gray triangles).

While the median values shown here encompass all

wind directions, in practice the ratios are directionally

dependent.

3) WEIGHING PARAMETER ESTIMATES

The relationships outlined in the two previous sub-

sections are used to map the LEMOS parameters from

the 28 stations to each cell (521 001 total) of the 333-m

WRF grid. For each forecast cycle and grid cell, the

LEMOS quantities (mu, my, s
2
u, and s2

y) are weighted to

combine the 28 stations into a single estimate of each

parameter. Following traditional data assimilation,

the weights are defined to be inversely proportional to

estimates of their precision. Three proxy measures

were considered: the distance between a station’s

location and the grid cell of interest, a station’s recent

deterministic forecast error [as defined by the bi-

variate mean absolute error bMAE (see section 5b)

associated with LEMOS mean forecasts over the

previous 30 days], and the standard error of the re-

gressions used to spread the predictive means. Thus,

for example, increased weighting would be assigned

as a result of a station’s 1) proximity, 2) higher

LEMOS forecast skill (reduced bMAE), or 3) similarity

to other stations (as defined by WRF-determined linear

relationships).

Weights are determined by minimizing deterministic

error (bMAE) across all 28 stations during a yearlong

data withdrawal study (section 5a). The optimization

process can be visualized by simultaneously consid-

ering the impact of the three precision quantities on

the bMAE (Fig. 5a). The vertices represent full (no)

weight for the respective (remaining two) schemes.

The interpolated EMOS (hereafter TEMOS) fore-

casts are least skillful (bMAE 2.38m s21, lower left)

when parameter estimates are weighed solely ac-

cording to recent LEMOS skill. The bMAE decreases

as distance and WRF similarity receive progressively

more weight, with maximum skill (bMAE 2.33m s21)

for weights of 85% and 15% (distance and WRF

similarity, respectively). While the range of bMAE

values is small (2.33–2.38m s21), the difference be-

tween the lowest and highest values is significant with

95% confidence (not shown). Hence, for the data

withdrawal experiment, the weights given to the zonal

FIG. 3. (a)WRFwind vectors for the gridcell-containing station XRPT (filled circles). The 30 wind vectors (filled

dark gray squares and light gray circles) determined using the direction of the 0000 UTC 7 Feb 2015 mean LEMOS

forecast at XRPT (filled white triangle, see text for details). (b) The u components of the 30 wind vectors for the

WRF KMLB and XRPT grid cells. The predictive mu estimate at KMLB (white filled diamond, 21.41m s21)

conditional on the corresponding predictive mean at XRPT (22.95m s21) lies on the least squares fit line (solid

black). The dotted line represents a one-to-one fit.
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(wu) and meridional (wy) mean and variance estimates

for station i are
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where k is the number of stations (i.e., 28); di is the

distance between station i and the grid cell of interest;

and eui and eyi are the standard errors of regression

models used to spread the mu and my parameters, re-

spectively [section 4b(1)].

While the bulk approach to optimizing the weights

favors a combination of both distance and similarity, this

is not necessarily the case for individual stations. For

example, the bMAE at the suburban/forested station

XDAI (near Melbourne, Florida; center of Fig. 1b) is

lowest when estimates are weighted according to LEMOS

skill and station similarity, prioritizing information from

comparably protected stations (Fig. 5b). In contrast, the

bMAE is lowest at Lake Okeechobee’s LZ40 when

distance weighted only as this places more emphasis on

the three remaining lake stations (Fig. 5c). The sensitivity

is relatively large as the bMAE increases by almost

0.35m s21 depending on the choice of weighting.

5. Experimental setup

a. Design

The TEMOS approach is assessed using the 28 sta-

tions in a yearlong data withdrawal experiment in which

an individual station’s parameters are estimated from

the other 27. TEMOS deterministic and probabilistic

metrics are compared with those of the rawGEFS and the

LEMOS estimated directly from the extracted station.

Forecasts are verified four times per day (corresponding

with GEFS cycle times) over calendar year 2015.

b. Verification

The skill of deterministic forecasts is gauged using the

bMAE, which represents the magnitude of the average

error vector between forecasts (fi) and observations (oi)

across N cases:

bMAE5
1

N
�
N

i51

jjf
i
2 o

i
jj , (6)

where jj�jj denotes the Euclidean norm in R2.

FIG. 4. Comparison ofmedianLEMOSs2
u (black circles) ands

2
y (gray triangles) values at each of

the 28 stations for calendar year 2015 vs the medianWRF wind speed at the corresponding station

locations. The WRF median wind speeds were obtained by sampling from the full suite (180) of

simulations at each of the station locations. The dashed line represents a one-to-one fit.
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To quantify the skill of probabilistic forecasts it is cus-

tomary to employ the energy score (ES; Gneiting and

Raftery 2007), which jointly evaluates the calibration and

sharpness of wind vector forecasts. For an ensemble fore-

cast F 5 Fens consisting of M members f1, . . . , fM 2 R2

and verifying observation o, the ES is defined as

ES(F
ens

,o)5
1

M
�
M

m51

jjf
m
2 ojj2 1

2M2 �
M

n51
�
M

m51

jjf
n
2 f

m
jj .

(7)

Equation (7) is used to calculate the ES for raw individual

GEFS forecasts. Since the TEMOS and LEMOSmethods

produce predictive PDFs, following Schuhen et al. (2012)

we pull K5 10000 random samples from their respective

bivariate densities and approximate the ES with

ES(F
ens

,o)5
1

K
�
K

k51

jjf
k
2 ojj2 1

2(K2 1)
�
K21

k51

jjf
k
2 f

k11
jj .

(8)

Similar to bMAE, acrossN cases the mean energy score

(hereafter ES) is

ES5
1

N
�
N

i51

ES(F
ens,i

, o
i
) . (9)

In addition, the reliability of the probabilistic fore-

casts is evaluated using multivariate rank histograms

(Gneiting et al. 2008). As explained by Hamill (2001), a

uniform rank histogram implies a calibrated ensemble,

while sloped, U, and bell-shaped rank histograms in-

dicate biased, underdispersive, and overdispersive en-

sembles, respectively. Examples of multivariate rank

histograms are shown in section 6b.

6. Results

a. Deterministic verification

The following deterministic results are separated into

two subsections, the first of which identifies the general

strengths and weaknesses of the TEMOS approach by

examining results averaged over all 28 stations. A more

detailed analysis at select stations then follows.

1) GENERAL RESULTS

The bMAE associated with the raw GEFS ensemble

mean (dark gray), TEMOS mean (gray), and LEMOS

mean (light gray) forecasts is shown in Fig. 6a. Values

represent averages across all stations as well as by

station characterization. Error bars represent 95%

confidence intervals determined by bootstrapping. Raw

GEFS error (‘‘none’’ category) is lowest at land stations

FIG. 5. TEMOS deterministic error as a function of the three weighting schemes (a) averaged across all stations

and at (b) XDAI and (c) LZ40. The lower left (top, lower right) rhombus indicates the bMAE (m s21) that results

when TEMOS parameters are exclusively weighed by LEMOS skill (distance, WRF similarity).
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(2.40m s21), and highest at water stations (2.77m s21).

LEMOS reduces the bMAEby 17.3%, an amount that is

comparable to that of Schuhen et al. (2012). LEMOS

appears to be more effective for land stations (28.3%

bMAE reduction) compared to water stations (3.6%

bMAE reduction)—a finding consistent with Junk et al.

(2014). This suggests that, in general, water (land) sta-

tions exhibit less (greater) wind vector bias in the GEFS

forecasts. LEMOS reduces the bMAE at all 28 stations,

17 of which are statistically significant (i.e., 95% confi-

dence) including 3 shoreline and all 8 water stations.

The raw GEFS and LEMOS provide a direct means

by which to gauge TEMOS performance as the former

(latter) yields a lower (upper) limit on forecast skill

improvement. Ultimately, postprocessing is useful only

if it improves forecast skill over the raw model while

the best-case scenario is that obtained directly from

LEMOS. Overall, TEMOS reduces the bMAE by 9.4%,

roughly half that of LEMOS. Analogous to LEMOS,

TEMOS is most effective at reducing bMAE at land

stations (20%), but increases the bMAE at water sta-

tions by 3.6%. When results are stratified by forecast

cycle (Fig. 6b), the TEMOS deterministic skill is close

to that of LEMOS during the middle of the night

(0600 UTC), morning (1200 UTC), and, to a lesser ex-

tent, during early evening (0000 UTC). During the af-

ternoon (1800 UTC) the TEMOS bMAE is 7.1% higher

than the rawGEFS.With the exception of the 1800UTC

cycle (discussed shortly), TEMOS appears to be a rea-

sonable approach for spreading LEMOS mean forecasts.

In general TEMOS performs best at locations well

represented by the WRF (i.e., where modeled upwind

surface elements and neutral stability represent the

actual conditions). For example, XDAI is well charac-

terized by the WRF, that is, the observed and modeled

magnitudes are similar (note its location near the one-

to-one line in the lower left of all four panels of Fig. 7),

and TEMOS is quite close to LEMOS across all forecast

FIG. 6. (a) Bivariate mean absolute error (bMAE; m s21) from GEFS 24-h ensemble mean forecasts (dark gray), LEMOS (light gray),

and TEMOS (gray) averaged by station type (land, shoreline, water) and for all stations during calendar year 2015. (b) The bMAE for all

stations but separated by forecast cycle. The columns are arranged to correspondwith the local diurnal cycle. (from left to right) middle of

the night (0600 UTC), morning (1200 UTC), early afternoon (1800 UTC), and early evening (0000 UTC). Error bars represent 95%

bootstrapped confidence intervals for the respective categorical means.
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cycles (Fig. 8), reducing the bMAE (cf. the raw GEFS) by

45.5% on average. This underscores the capabilities of

TEMOS at stations that are consistent with theirWRF grid

characterization. In contrast, the WRF KPBI (West Palm

Beach, Florida) grid cell is classified as urban (surface

roughness of 0.8m), while KPBI is actually a large, rela-

tively smooth, airfield (surface roughness on the order of

0.01m).Asa result,TEMOSunderforecastsKPBIwindspeeds

(not shown), leading to increased error (cf. the raw GEFS) for

all cycles (Fig. 8). Conversely, the poor TEMOS performance

at XAQU (shoreline station near Melbourne Beach, Flor-

ida; near the center of Fig. 1b) is an artifact of overforecasting

the wind speed. Despite its ostensibly fetch favorable

shoreline location, XAQU experiences local obstructions

(e.g., groves of trees, buildings) uncaptured by the WRF.

2) 1800 UTC PERFORMANCE

To explain the poor TEMOSperformance at 1800UTC,

the agreement between observed and modeled winds is

assessed by comparing median LEMOS wind speeds

(over the study period), which are unbiased estimates of

future observations, to median WRF wind speeds (from

all 180 simulations) at each station, separated by fore-

cast cycle (Fig. 7). At 0600 and 1200 UTC the stations

are relatively evenly distributed about the one-to-one

lines (dashed) and, to a lesser extent, at 0000 UTC.

However, at 1800 UTC median LEMOS wind speeds

are essentially independent of, and are greater than

(with the exception of some of the water stations), those

from the WRF. This is an artifact of various physical

processes, present in the observations, which were

explicitly not accounted for in the WRF simulations—

including radiation, microphysics, and variations in

static stability. As a result, the increased mixing associ-

ated with an unstable afternoon surface layer, sea and

lake breezes, and thunderstorm outflows are not present

in the simulations. The absence of such features is par-

ticularly problematic in themid- to late afternoon, and it

limits the ability of TEMOS to effectively spread in-

formation between locations, particularly those that are

dissimilar (e.g., from land to water and vice versa). Thus,

the TEMOS mean forecasts exhibit larger error at

1800 UTC because the WRF relationships on which

TEMOS relies are not consistent with the observations.

Consider KOBE, which is approximately 10 km north

of Lake Okeechobee (Fig. 1). Similar to XDAI, where

TEMOS performs well (Fig. 8), KOBE is approximately

consistent with its WRF characterization (Fig. 7).

However, because of the proximity-dominated weight-

ing of the individual LEMOS estimates, KOBE’s TEMOS

FIG. 7. As in Fig. 4 but for median LEMOS wind speed (y axis) vs median WRF wind speed (x axis), separated

by forecast cycle and segregated by station type. Squares, circles, and triangles denote land-, shoreline-, and water-

based stations, respectively. Dashed lines represent a one-to-one fit.
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forecasts are heavily influenced by the four nearby Lake

Okeechobee stations (L001, L005, L006, and LZ40).

The WRF scale factor between these locations is ap-

proximately 2-to-1 from the lake stations to KOBE.

However, lake surface divergence in tandem with the

increased mixing associated with an unstable surface

layer at KOBE results in comparable 1800 UTC

observed median wind speeds at these locations (Fig. 7).

As a result, TEMOS spreads winds from the lake to

KOBE that are approximately half the magnitude of

those observed at KOBE, and thus there is no im-

provement in the bMAE compared to the raw GEFS

(Fig. 9). Similar problems are manifest at other loca-

tions, such as the isolated oceanic station 41009, where

FIG. 8. As in Fig. 6b, but for stations KPBI, XAQU, and XDAI.
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elevated wind speeds (related to the sea breeze and in-

creased instability) at nearby land and shoreline stations

lead to overforecasted afternoon TEMOS winds, de-

grading the deterministic skill by 48% (Fig. 9).

Despite the absence of a model lake breeze, the ef-

fects of using WRF gridcell relationships that are in-

consistent with observed afternoon wind fields are less

of a problem at Lake Okeechobee stations. In this case,

the observed 1800 UTC wind speeds associated with the

lake breeze are reduced at all four lake stations (Fig. 7),

and the distance weighting yields TEMOS parameter

estimates that are primarily determined from the

remaining (similar) three lake stations. Hence, in contrast

to 41009, the availability of similar nearby wind

FIG. 9. As in Fig. 8, but for stations KOBE, 41009, and LZ40.
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information results in overlapping TEMOS and

LEMOS confidence intervals across all cycles at LZ40,

as desired (Fig. 9). This indicates that TEMOS skill can

be improved with increased observational density—on

the condition of proximity and similarity in both the

observational and WRF frameworks.

b. Probabilistic verification

The negatively oriented (i.e., smaller is better) energy

score metric [Eq. (7)] simultaneously quantifies cali-

bration and sharpness. It is improved by reducing the

average deterministic error of the ensemble, increasing

the average Euclidean distance between each member

(i.e., increasing the ensemble spread toward the obser-

vation), and/or enhancing the representation of the ac-

tual correlation structure. The latter does not apply here

since we set ruy 5 0 in the EMOS model (section 3), but

its relation to the deterministic results (bMAE) is im-

portant. The raw GEFS produces larger mean energy

scores (ES) at water stations (2.43m s21), where de-

terministic error is the largest of the three station types

(Figs. 6a and 10a). The raw ensemble clearly possesses

dispersion errors, as LEMOS and TEMOS improve the

ES by 30.3% and 24.4%, respectively. Comparing these

values with their deterministic counterparts (17.3% and

9.4% improvement in the bMAE for LEMOS and

TEMOS, respectively) suggests that TEMOS is more

effective at gridded calibration of probabilistic forecasts

than deterministic bias correction alone. Although

TEMOS increases the deterministic error at 1800 UTC,

the ES is improved over the raw ensemble by 10.4%

(Fig. 10b), indicating that the probabilistic benefits

outweigh the diminished deterministic skill.

Multivariate rank histograms are examined to further

assess the degree to which TEMOS improves calibration

(Fig. 11). The U-shaped rank histograms for the raw

GEFS indicate that it is underdispersive, regardless of

station type. Both TEMOS and LEMOS correct for this,

as evidenced by their nearly uniform rank histograms.

The reliability index (D; Delle Monache et al. 2006),

which quantifies a distribution’s deviation from unifor-

mity, is also shown. The Ds for TEMOS and LEMOS

histograms are comparable (D 5 0 indicates a perfectly

uniform distribution)—indicating that the former appears

FIG. 10. As in Fig. 6, but for mean energy scores (m s21).
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to be as effective as local calibration at correcting for

dispersion errors.

The rank histograms provide insight into the reliability

of the calibrated forecast probabilities. As explained pre-

viously, theES is improvedby increasing deterministic skill

(e.g., bias correction only). The bias correction portion of

LEMOS [Eq. (2)] accounts for more than half (55%) of

the ES reduction when compared to the raw GEFS

(not shown). However, the rank histograms retain their

U shape and exhibit only marginal improvement (i.e., D
decreases from 0.933 to 0.924, not shown). The extent that

bias correction alone fails to improve probabilistic re-

liability is an artifact of the underdispersive nature of the

GEFS ensemble (as is the case for many current ensemble

systems). This underscores the added value in dispersion

correction (i.e., scaling the ensemble spread) during cali-

bration, which yields rank histograms that are essentially

uniform for both the TEMOS and LEMOS approaches.

FIG. 11. Multivariate rank histograms and reliability indices (D; Delle Monache et al. 2006) of (left) raw GEFS, (middle) TEMOS, and

(right) LEMOS 24-h wind vector forecasts for (bottom row) all stations and station type. Dashed lines indicate uniformity.

SEPTEMBER 2018 HOLMAN ET AL . 2873

Unauthenticated | Downloaded 01/03/23 08:40 PM UTC



At the station level, dispersion errors, and thus cali-

bration, are impacted by representativeness issues. For

example, with the exception of 1800 UTC, both XCCB

and KFPR appear to be consistent with their respective

WRF grid cells as both lie close to best fit lines (Fig. 7).

Consequently, the TEMOS multivariate rank histo-

grams at these stations are essentially uniform (Fig. 12,

top two rows). However, as discussed previously, the

wind speeds at KPBI are faster than resolved by the

WRF simulations. As a result, the TEMOS forecasts are

underdispersive and biased (i.e., left-skewed histogram). At

the urban station XVER (Vero Beach, Florida), where the

variance parameters are overestimated (not shown), the

bell-shaped rank histogram indicates overdispersion.

c. Case study, easterly flow, 0000 UTC 5 May 2015

To illustrate the TEMOS method, it is applied to a

case study and compared with raw GEFS ensemble

mean 24-h wind vector forecasts. This is accomplished

by applying LEMOS using GEFS forecasts and observed

FIG. 12. As in Fig. 11, but at stations XCCB, KFPR, KPBI, and XVER.
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winds at the 28 stations to produce estimates of the bi-

variate predictive distribution parameters (mean and var-

iance, section 3). These parameters are then spread onto a

downscaled 333-m grid (more than 500000 grid cells), us-

ing directionally dependent statistical relationships de-

termined from the idealized WRF simulations.

A typical synoptic-scale easterly surface flow case is

presented here (Fig. 13). The GEFS ensemble mean

24-h forecast wind speeds gradually diminish from near

9m s21 over the ocean to 4ms21 over the Florida Pen-

insula (Fig. 14a). While the coastline and lakes (in-

cluding Lake Okeechobee and the IRL), are not

resolved in the raw GEFS, these features are clearly

visible in the TEMOS product (Fig. 14b). Furthermore,

the spurious oceanic gradient in wind speed in the raw

GEFS (in part an artifact of the interpolation of the

coarse data onto the refined grid) is no longer present in

the TEMOS (calibrated) forecast. In contrast, TEMOS

exhibits marked changes in magnitude as the flow

transitions across the land/water mask. Only subtle

changes in wind direction exist between the two prod-

ucts. Increased cross-isobaric flow is evident in associa-

tion with the rougher surface elements (on the order of

1m; Fig. 14d) in the Orlando metropolitan area (dashed

rectangle in Fig. 14b), and the winds back to a more

easterly direction on the downwind (western) side of

Lake Okeechobee (roughness on order of 1024m). The

relatively small impact of TEMOS on the calibrated

wind direction is, in general, consistent with previous

studies that indicate little in the way of wind direction

bias in current operational NWP forecast systems (e.g.,

Bao et al. 2010).

The wind speed impact of the calibration is examined

by differencing the two products (TEMOS minus the

raw GEFS; Fig. 14c). As expected, there is considerable

correlation between the wind speed differences and

WRF surface roughness. The largest impacts (on the

order of 3m s21) tend to occur in association with re-

gions populated by rougher surface elements (urban,

forest; Fig. 14d) for which the TEMOS winds are re-

duced, but are also manifest (as increased wind speed)

over portions of Lake Okeechobee, the coastal ocean,

and some estuaries. The TEMOS sensitivity to flow-

dependent changes in the surface roughness is also ap-

parent as winds increase from east to west over inland

water bodies. In general, TEMOS results in an increase in

wind speeds over the IRL, except for the downwind re-

gions west of Cape Canaveral andMerritt Island (Fig. 14c,

inset) where the resolved upwind land fetch decreases the

wind speed (by 1–2ms21) relative to the GEFS.

Because TEMOS parameter estimates are primarily

distance weighted, potentially undesirable results can

FIG. 13. Surface analysis valid at 0000 UTC 5 May 2015.
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FIG. 14. Gridded (333m) (a) GEFS ensemblemean and (b) mean TEMOS 24-h wind speed forecasts (m s21) and

associated wind barbs (black) valid at 0000 UTC 5May 2015. Verifying wind observations are colored red. Dashed

rectangle indicates the location of the Orlandometropolitan area, mentioned in the text. (c)Wind speed difference

(TEMOS minus GEFS ensemble mean, m s21), with red (blue) shading indicating that TEMOS wind speeds are

faster (slower) than the GEFS ensemble mean. Inset provides a zoomed-in view of the northern IRL, Cape

Canaveral, and Merritt Island. (d) WRF Model surface roughness lengths (cm).
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occur in the wind field near observing stations. This is

evident with respect to two stations in the southern

portion of Lake Okeechobee, identifiable as dark red

bull’s-eyes since TEMOS wind speeds at these stations

exceed those of the surrounding water (Fig. 14c). Simi-

larly, an enhanced region of increased wind speeds as-

sociated with nearby (low roughness) airports bleeds

into the coastal ocean east of KDAB (top of Fig. 14a).

Additionally, despite averaging the flow over the last

hour of theWRF simulations, some still contain bands of

increased wind speed over the oceanic portions of the

model domain (e.g., SE corner of Figs. 14b and 14c).

These features appear to be a result of the open

boundary conditions in the WRF Model. While time

averaging mitigates the impact of these features, their

persistence suggests that additional smoothing may be

needed to extract the mean wind field only. Regardless,

their existence does not significantly impact TEMOS

results.

While the data-withdrawal experiments indicate that

TEMOS, in general, reduces the 0000 UTC determin-

istic error (Fig. 6b), that is not the case here. TEMOS

improves (degrades) deterministic skill at 11 (17) of the

28 stations resulting in an overall small (0.05m s21) in-

crease in the average bMAE compared to the raw

GEFS. Nonetheless, TEMOS reduces the ES by 20.5%

(from 2.34 to 1.86m s21) as the number of observations

falling outside the ensemble spread decreases from 15 to

5—highlighting its probabilistic capabilities. Moreover,

the calibrated predictive densities at each cell can be

sampled to produce fields of wind speed representing

the tails of the distribution. For example, the lower and

upper 10% likely wind speed thresholds can be esti-

mated by drawing 1000 samples from each grid cell’s

bivariate density, sorting, and then extracting the 100th

and 900th values (Fig. 15). Water bodies are easily

identifiable in both of the wind fields. As a result of the

positive correlation between forecast wind speed and

uncertainty, the range of likely wind speeds is larger for

water-based grid cells (6–13ms21) than those over land

(1–5ms21).

7. Summary and discussion

A combined dynamical/statistical approach is in-

troduced that transforms wind forecasts from a coarse,

biased, underdispersive ensemble into high-resolution,

gridded, calibrated wind fields. This method, referred to

here as interpolated ensemble model output statistics

(TEMOS), utilizes flow-dependent statistical relation-

ships extracted from idealized high-resolution WRF

simulations to spread locally calibrated winds from lo-

cations with observations to those without. Although

there is considerable overhead with respect to generating

the suite of WRF simulations, the TEMOS implementa-

tion is relatively straightforward, adaptable to any domain

and resolution with reasonable computational expense.

TEMOS was applied to calibrate and downscale one

year of 24-h wind forecasts from the 18 GEFS ensemble

over east-central Florida. The domain features, which

include a coastal estuary with a complex land/water

mask, are an ideal test bed for examining the proposed

methodology. The raw GEFS forecasts are biased, es-

pecially at land stations, and underdispersive. Using

28 Florida stations and data withdrawal experiments,

TEMOS improved the deterministic (bMAE) and

probabilistic (ES) forecast skill by 9.4% and 24.4%, re-

spectively. Compared to LEMOS, which provides an

upper limit of the method’s utility (conditional on WRF

representativeness), TEMOS corrects for 54.3% and

80.5% of bias and dispersion errors in the GEFS 24-h

forecasts, respectively. Additionally, uniform multivar-

iate rank histograms indicate that TEMOS forecasts are

calibrated. The improved probabilistic forecast skill is a

key benefit of the TEMOS approach.

TEMOS is applied to an easterly flow event. In con-

trast to the raw GEFS, the downscaled (and calibrated)

wind fields resolve the water bodies in the region, pro-

ducing winds that better reflect the region’s heteroge-

neous surface characteristics. While TEMOS slightly

increases the deterministic error, its enhancement of the

variance increases the number of observations encom-

passed by the ensemble spread by 77%.

Situations where the meteorological conditions are

more dynamic can be problematic. In a separate analysis

of a frontal passage event, TEMOS fails to adequately

resolve the wind shift (not shown). These as well as high-

impact events, in general, require more tailored solu-

tions such as implementing a radius of influence (e.g.,

Yussouf and Stensrud 2006) when spreading parameter

estimates and/or limiting training data to analog cases

(e.g., Delle Monache et al. 2011). The former places

additional emphasis on station proximity and thus re-

quires increased observational density. The analog ap-

proach distinguishes between pre- and postfrontal errors

in the training data, theoretically improving local mean

forecasts and the subsequent dispersal of that in-

formation through TEMOS if a sufficient number of

representative training cases are available.

The TEMOS method essentially relies on two basic

assumptions. The first is that the WRF spatial relation-

ships represent those of the actual atmosphere. The

other assumes that each observing station is represen-

tative of its corresponding WRF grid cell. TEMOS

performs well only when these assumptions are generally

valid. Stations poorly characterized by the WRF, such as
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XAQU (Melbourne Beach, Florida) and KPBI (West

Palm Beach, Florida) are easily identified after TEMOS

application and thus can be excluded when implementing

the approach operationally.

The first assumption appears to be an issue during

typical Florida afternoons (1800 UTC), where the me-

dian LEMOS wind speeds are essentially independent

of those from the WRF. As a result, the afternoon

TEMOS forecasts degrade the deterministic skill by

7.1%. Strong afternoon winds observed at many land

stations are likely a result from increased turbulent

mixing when the surface layer is most unstable. To iso-

late the response of the 10-m wind to the heterogeneous

land surface, mesoscale features such as sea breezes,

lake breezes, and thunderstorm outflows are not repre-

sented in the idealized WRF simulations. The assump-

tion that, to a first order, the flow is strongly driven by

bulk surface inhomogeneities (i.e., surface roughness)

appears to be reasonable except at 1800 UTC. These

mesoscale features could be incorporated, for example,

by performing additional WRF simulations initialized

with a seasonally averaged afternoon air–sea tempera-

ture difference, resolving sea- and lake-breeze circula-

tions under various steering flow regimes. Relationships

could then be extracted from these data and applied to

the forecasts valid at 1800 UTC following the approach

used here. Regardless, the mean energy scores are im-

proved for all forecast cycles, and the nearly uniform rank

histograms indicate that variance parameters are effec-

tively spread irrespective of the time of day and thus the

approach effectively spreads calibrated information.

Given the initial success of the method used here, it

might be possible to improve the work by incorporating

other techniques. For example, Scheuerer and Möller
(2015) introduce a kriging model that leverages annual

mean wind speed information using a 200m2 gridded

wind speed climatology. Devoid of such a high-resolution

wind product over this study’s domain of interest, a kriging

approach could instead utilize wind speed information

from the high-resolution WRF simulations. Additionally,

FIG. 15. Gridded estimates of (a) lower and (b) upper 10% likely TEMOS 24-h wind speed forecasts (m s21) valid at

0000 UTC 5 May 2015. See text for details.
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Lerch and Baran (2017) introduce a semilocal, clustering-

based approach of estimating EMOS parameters for

probabilistic wind speed forecasts. Building off of their

work, the method introduced here could be extended

by identifying similar grid cells in the WRF output,

estimating EMOS parameters with pooled training

data from stations within each cluster, then spreading

these parameters between clusters (as opposed to

individual cells).

As presented here we optimize the station weights to

spread the predictive PDF parameters by minimizing

the bMAE [section 4b(3)]. As an alternative metric, the

ES could also be leveraged for this purpose. As the ES

accounts for both bias and dispersion, it is likely to offer

some additional improvement over that of the bMAE

alone. Future implementations of this approach should

make this consideration.
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